Multi-label feature selection via adaptive label correlation estimation

نویسندگان

چکیده

In multi-label learning, each instance is associated with multiple labels simultaneously. Multi-label data often has noisy, irrelevant, and redundant features of high dimensionality. feature selection received considerable attention as an effective means for dealing high-dimensional data. Many methods exploit label correlations to help select features. However, finding selecting in existing are two separate processes, the existence noises outliers training makes exploited from space less reliable. Therefore, learned may mislead process result informative This paper proposes a novel algorithm named ROAD, i.e., featuRe selectiOn via ADaptive correlation estimation. ROAD jointly performs adaptive exploration alternating optimization obtain reliable estimation correlations, which can more effectively reveal intrinsic manifold structure among lead proper subset. Comprehensive experiments on several frequently used sets validate superiority against state-of-the-art algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Multi-Label Informed Feature Selection

Multi-label learning has been extensively studied in the area of bioinformatics, information retrieval, multimedia annotation, etc. In multi-label learning, each instance is associated with multiple interdependent class labels, the label information can be noisy and incomplete. In addition, multi-labeled data often has high-dimensional noisy, irrelevant and redundant features. As an effective d...

متن کامل

Efficient Multi-Label Feature Selection Using Entropy-Based Label Selection

Abstract: Multi-label feature selection is designed to select a subset of features according to their importance to multiple labels. This task can be achieved by ranking the dependencies of features and selecting the features with the highest rankings. In a multi-label feature selection problem, the algorithm may be faced with a dataset containing a large number of labels. Because the computati...

متن کامل

Multi-label Classification via Feature-aware Implicit Label Space Encoding

To tackle a multi-label classification problem with many classes, recently label space dimension reduction (LSDR) is proposed. It encodes the original label space to a low-dimensional latent space and uses a decoding process for recovery. In this paper, we propose a novel method termed FaIE to perform LSDR via Feature-aware Implicit label space Encoding. Unlike most previous work, the proposed ...

متن کامل

Feature selection for multi-label learning

Feature Selection plays an important role in machine learning and data mining, and it is often applied as a data pre-processing step. This task can speed up learning algorithms and sometimes improve their performance. In multi-label learning, label dependence is considered another aspect that can contribute to improve learning performance. A replicable and wide systematic review performed by us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Knowledge Discovery From Data

سال: 2023

ISSN: ['1556-472X', '1556-4681']

DOI: https://doi.org/10.1145/3604560